Convex Optimization for Signal Processing and Communications: From Fundamentals to **Applications**

Chong-Yung Chi

Institute of Communications Engineering & Department of Electrical Engineering National Tsing Hua University, Taiwan 30013 E-mail: cychi@ee.nthu.edu.tw Web: http://www.ee.nthu.edu.tw/cychi/

Invited tutorial talk at Aalborg University, Denmark, 2018/9/20

Acknowledgment: My post doctor, **Dr. Chia-Hsiang Lin** for preparing slides of Part II. My Ph.D. student, **Yao-Rong Syu** for some slides preparation.

1 Part I: Fundamentals of Convex Optimization

- Part II: Application in Hyperspectral Image Analysis: (Big Data Analysis and Machine Learning)
- **3** Part III: Application in Wireless Communications (5G Systems)
 - Subsection I: Outage Constrained Robust Transmit Optimization for Multiuser MISO Downlinks
 - Subsection II: Outage Constrained Robust Hybrid Coordinated Beamforming for Massive MIMO Enabled Heterogeneous Cellular Networks

• Optimization problem:

 $\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{x} \in \mathcal{C} \end{array} \tag{1}$

where $f(\mathbf{x})$ is the objective function to be minimized and \mathcal{C} is the feasible set from which we try to find an optimal solution. Let

 $\mathbf{x}^{\star} = \arg\min_{\mathbf{x}\in\mathcal{C}} f(\mathbf{x}) \quad \text{(optimal solution or global minimizer)} \tag{2}$

• Challenges in applications:

• Local optima; large problem size; decision variable x involving real and/or complex vectors, matrices; feasible set C involving generalized inequalities, etc.

• Computational complexity: NP-hard; polynomial-time solvable.

• Performance analysis: Performance insights, properties, perspectives, proofs (e.g., identifiability and convergence), limits and bounds.

• Affine (convex) combination: Provided that C is a nonempty set,

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \dots + \theta_K \mathbf{x}_K, \ \mathbf{x}_i \in C \ \forall i$$
(3)

is called an *affine (a convex) combination* of $\mathbf{x}_1, \ldots, \mathbf{x}_K$ (*K* vectors or points of a set) if $\sum_{i=1}^{K} \theta_i = 1, \ \theta_i \in \mathbb{R}$ ($\theta_i \in \mathbb{R}_+$), $K \in \mathbb{Z}_{++}$.

• Affine (convex) set:

• *C* is an *affine (a convex) set* if *C* is closed under the operation of *affine (convex) combination*;

- an affine set is constructed by *lines*;
- a convex set is constructed by *line segments*.

• Conic set:

- If $\theta \mathbf{x} \in C$ for any $\theta \in \mathbb{R}_+$ and any $\mathbf{x} \in C$, then the set C is a *cone* and it is constructed by *rays starting from the origin*;
- the linear combination (3) is called a *conic combination* if $\theta_i \ge 0 \ \forall i$;

Convex Set Examples

• Left plot: An ellipsoid with semiaxes $\sqrt{\lambda_1}, \sqrt{\lambda_2}$, and an Euclidean ball with radius $r > \max\{\sqrt{\lambda_1}, \sqrt{\lambda_2}\}$ in \mathbb{R}^2 ; right plot: Second-order cone in \mathbb{R}^3 .

Let A = {a₁,..., a_N} ⊂ ℝ^M. Affine hull of A (the smallest affine set containing A) is defined as

$$\begin{aligned} & \operatorname{aff} \mathcal{A} \triangleq \left\{ \mathbf{x} = \sum_{i=1}^{N} \theta_i \mathbf{a}_i \mid \sum_{i=1}^{N} \theta_i = 1, \ \theta_i \in \mathbb{R} \ \forall i \right\} \\ & = \left\{ \mathbf{x} = \mathbf{C} \boldsymbol{\alpha} + \mathbf{d} \mid \boldsymbol{\alpha} \in \mathbb{R}^p \right\} \ \text{(affine set representation)} \end{aligned}$$

where $\mathbf{C} \in \mathbb{R}^{M imes p}$ is of full column rank, $\mathbf{d} \in \operatorname{aff} \mathcal{A}$, and

affdim $\mathcal{A} = p \leq \min\{N - 1, M\}.$

• \mathcal{A} is affinely independent $(\mathcal{A}.\mathcal{I}.)$ with affdim $\mathcal{A} = N - 1$ if the set $\{\mathbf{a} - \mathbf{a}_i \mid \mathbf{a} \in \mathcal{A}, \mathbf{a} \neq \mathbf{a}_i\}$ is linearly independent for any *i*; moreover,

aff $\mathcal{A} = \{\mathbf{x} \mid \mathbf{b}^T \mathbf{x} = h\} \triangleq \mathcal{H}(\mathbf{b}, h) \text{ (when } M = N)$

is a hyperplane, where (\mathbf{b}, h) can be determined from \mathcal{A} (closed-form expressions available).

Figure 1: An illustration in \mathbb{R}^3 , where **conv**{ $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ } is a simplex defined by the shaded triangle, and **conv**{ $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ } is a simplex (and also a simplest simplex) defined by the tetrahedron with the four extreme points { $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ }.

Let A = {a₁,..., a_N} ⊂ ℝ^M. Convex hull of A (the smallest convex set containing A) is defined as

$$\mathsf{conv}\ \mathcal{A} = \bigg\{ \mathbf{x} = \sum_{i=1}^{N} \theta_i \mathbf{a}_i \mid \sum_{i=1}^{N} \theta_i = 1, \ \theta_i \in \mathbb{R}_+ \ \forall i \bigg\} \subset \mathrm{aff}\ \mathcal{A}$$

• conv \mathcal{A} is called a *simplex* (a polytope with N vertices) if \mathcal{A} is $\mathcal{A.I.}$

• When \mathcal{A} is $\mathcal{A.I.}$ and M = N - 1, conv \mathcal{A} is called a <u>simplest simplex</u> of N vertices (i.e., $\mathbf{a}_1, \ldots, \mathbf{a}_N$);

aff $(\mathcal{A} \setminus {\mathbf{a}_i}) = \mathcal{H}(\mathbf{b}_i, h_i), \ i \in \mathcal{I}_N = {1, \dots, N}$

is a hyperplane, where the N boundary hyperplane parameters $\{(\mathbf{b}_i, h_i), i = 1, \dots, N\}$ can be uniquely determined from \mathcal{A} (closed-form expressions available) and vice versa.

Convex Set Examples

• Left plot: conic C (called the *conic hull of* C) is a *convex cone* formed by $C = {\mathbf{x}_1, \mathbf{x}_2}$ via conic combinations, i.e., *the smallest conic set that contains* C; right plot: conic C formed by another set C (star).

Left plot: y₁+y₂ ∉ B, implying that B is not a convex set; right plot: f(x) is a convex function (by (4)).

• Convex function: f is convex if dom f (the domain of f) is a convex set, and for all $\mathbf{x}, \mathbf{y} \in \mathbf{dom} f$,

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}), \ \forall \ 0 \le \theta \le 1.$$
(4)

• f is *concave* if -f is convex.

Some Examples of Convex Functions

- An affine function $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + b$ is both convex and concave on \mathbb{R}^n .
- $f(\mathbf{x}) = \mathbf{x}^T \mathbf{P} \mathbf{x} + 2\mathbf{q}^T \mathbf{x} + r$, where $\mathbf{P} \in \mathbb{S}^n$, $\mathbf{q} \in \mathbb{R}^n$ and $r \in \mathbb{R}$ is convex if and only if $\mathbf{P} \in \mathbb{S}^n_+$.
- Every norm on \mathbb{R}^n (e.g., $\|\cdot\|_p$ for $p \ge 1$) is convex.
- Linear function f(X) = Tr(AX) (where Tr(V) denotes the trace of a square matrix V) is both convex and concave on R^{n×n}.
- $f(\mathbf{X}) = -\log \det(\mathbf{X})$ is convex on \mathbb{S}^n_{++} .

First-order Condition

Suppose that f is differentiable. f is a convex function if and only if dom f is a convex set and

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathbf{dom} \ f.$$
(5)

Second-order Condition

Suppose that f is twice differentiable. f is a convex function if and only if ${\bf dom}\;f$ is a convex set and

$$\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$$
 (positive-semidefinite), $\forall \mathbf{x} \in \mathbf{dom} \ f.$ (6)

Epigraph

The *epigraph* of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as

epi
$$f = \{(\mathbf{x}, t) \mid \mathbf{x} \in \mathbf{dom} \ f, \ f(\mathbf{x}) \le t\} \subseteq \mathbb{R}^{n+1}.$$
 (7)

A function f is convex if and only if epi f is a convex set.

First-order Condition and Epigraph

Left plot: first-order condition for a convex function f for the one-dimensional case: f(b) ≥ f(a) + f'(a)(b - a), for all a, b ∈ dom f; right plot: the epigraph of a convex function f : ℝ → ℝ.

Convexity Preserving Operations

- Intersection, $\bigcap_i C_i$ of convex sets C_i is a convex set; Nonnegative weighted sum, $\sum_i \theta_i f_i$ (where $\theta_i \ge 0$) of convex functions f_i is a convex function.
- Image, h(C) = {h(x) | x ∈ C}}, of a convex set C via affine mapping h(x) ≜ Ax + b, is a convex set;
 Composition f(h(x)) of a convex function f with affine mapping h is a convex function;
- Image, p(C), of a convex set C via perspective mapping $p(\mathbf{x},t) \triangleq \mathbf{x}/t$ is a convex set;

Perspective, $g(\mathbf{x},t) = tf(\mathbf{x}/t)$ (where t > 0) of a convex function f is a convex function.

Perspective Mapping & Perspective of a Function

• Left plot: pinhole camera interpretation of the perspective mapping p(x,t) = x/t, t > 0;right plot: epigraph of the perspective g(x,t) = tf(x/t), t > 0 of $f(x) = x^2$, where each ray is associated with $g(at,t) = a^2t$ for a different value of a.

Convex optimization problem

• Convex problem:

(CVXP)
$$p^* = \min_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x})$$
 (8)

is a convex problem if the objective function $f(\cdot)$ is a convex function and C is a convex set (called the feasible set) in standard form as follows:

$$\mathcal{C} = \{ \mathbf{x} \in \mathcal{D} \mid f_i(\mathbf{x}) \le 0, h_j(\mathbf{x}) = 0, i = 1, \dots, m, j = 1, \dots, p \},\$$

where $f_i(\mathbf{x})$ is convex for all *i* and $h_j(\mathbf{x})$ is affine for all *j* and

$$\mathcal{D} = \operatorname{\mathbf{dom}} f \cap \left\{ \bigcap_{i=1}^m \operatorname{\mathbf{dom}} f_i \right\} \bigcap \left\{ \bigcap_{i=1}^p \operatorname{\mathbf{dom}} h_i \right\}$$

is called the problem domain.

• Advantages:

• *Global optimality*: x^* can be obtained by closed-form solution, analytically (algorithm), or numerically by convex solvers (e.g., CVX and SeDuMi).

- Computational complexity: Polynomial-time solvable.
- Performance analysis: KKT conditions are the backbone for analysis.

Global optimality and solution

An optimality criterion: Any suboptimal solution to CVXP (8) is globally optimal. Assume that f is differentiable. Then a point x^{*} ∈ C is optimal if and only if

$$\nabla f(\mathbf{x}^{\star})^{T}(\mathbf{x} - \mathbf{x}^{\star}) \ge 0, \ \forall \mathbf{x} \in \mathcal{C}$$
(9)

(where int $C \neq \emptyset$ is assumed)

Global optimality and solution

- Besides the optimality criterion (9), a complementary approach for solving CVXP (8) is founded on the "duality theory".
 - Dual problem:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \triangleq f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x}) \quad \text{(Lagrangian)}$$

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \mathcal{D}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) > -\infty \quad \text{(dual function)}$$

$$d^* = \max \{ g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \mid \boldsymbol{\lambda} \succeq \mathbf{0}, \boldsymbol{\nu} \in \mathbb{R}^p \} \quad \text{(dual problem)}$$

$$\leq p^* = \min \{ f(\mathbf{x}) \mid \mathbf{x} \in \mathcal{C} \} \quad \text{(primal problem CVXP (8))}$$
(10)

where $\lambda = (\lambda_1, \ldots, \lambda_m)$ and $\nu = (\nu_1, \ldots, \nu_p)$ are dual variables; " \succeq " stands for an abbreviated generalized inequality defined by the proper cone $K = \mathbb{R}^m_+$, i.e., the first orthant, (a closed convex solid and pointed cone), i.e., $\lambda \succeq_K \mathbf{0} \Leftrightarrow \lambda \in K$.

CVXP (8) and its dual can be solved simultaneously by solving the so-called *KKT conditions*.

• KKT conditions:

Suppose that $f, f_1, \ldots, f_m, h_1, \ldots, h_p$ are differentiable and \mathbf{x}^* is primal optimal and $(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ is dual optimal to CVXP (8). Under *strong duality*, i.e.,

$$p^{\star} = d^{\star} = \mathcal{L}(\mathbf{x}^{\star}, \boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star})$$

(which holds true under *Slater's condition: a strictly feasible point exists, i.e.,* relint $C \neq \emptyset$), the KKT conditions for solving \mathbf{x}^* and $(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ are as follows:

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}) = \mathbf{0}, \tag{11a}$$

$$f_i(\mathbf{x}^*) \le 0, \ i = 1, \dots, m,$$
 (11b)

$$h_i(\mathbf{x}^{\star}) = 0, \ i = 1, \dots, p,$$
 (11c)

$$\lambda_i^* \ge 0, \ i = 1, \dots, m, \tag{11d}$$

 $\lambda_i^{\star} f_i(\mathbf{x}^{\star}) = 0, \ i = 1, \dots, m.$ (complementary slackness) (11e)

The above KKT conditions (11) and the optimality criterion (9) are equivalent under Slater's condition.

• Lagrangian $\mathcal{L}(x, \lambda)$, dual function $g(\lambda)$, and primal-dual optimal solution $(x^*, \lambda^*) = (1, 1)$ of the convex problem $\min\{f_0(x) = x^2 \mid (x - 2)^2 \le 1\}$ with strong duality. Note that $f_0(x^*) = g(\lambda^*) = \mathcal{L}(x^*, \lambda^*) = 1$.

Linear Programming (LP) - Inequality Form

min
$$\mathbf{c}^T \mathbf{x}$$
 (12)
s.t. $\mathbf{G} \mathbf{x} \leq \mathbf{h}$, (\leq stands for componentwise inequality)
 $\mathbf{A} \mathbf{x} = \mathbf{b}$,

where $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{p \times n}$, $\mathbf{b} \in \mathbb{R}^p$, $\mathbf{G} \in \mathbb{R}^{m \times n}$, $\mathbf{h} \in \mathbb{R}^m$, and $\mathbf{x} \in \mathbb{R}^n$ is the unknown vector variable.

LP- Standard Form

$$\begin{array}{l} \min \ \mathbf{c}^T \mathbf{x} & (13) \\ \text{s.t. } \mathbf{x} \succeq \mathbf{0}, \\ \mathbf{A} \mathbf{x} = \mathbf{b}, \end{array}$$

where $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{p \times n}$, $\mathbf{b} \in \mathbb{R}^p$, and $\mathbf{x} \in \mathbb{R}^n$ is the unknown vector variable.

Standard Convex Optimization Problems (Cont'd)

Quadratic Programming (QP): Convex if and only if $\mathbf{P}\succeq \mathbf{0}$ (i.e., \mathbf{P} is positive semidefinite)

min
$$\frac{1}{2}\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{q}^T \mathbf{x} + r$$
 (14)
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}, \ \mathbf{G} \mathbf{x} \preceq \mathbf{h},$

where $\mathbf{P} \in \mathbb{S}^n$, $\mathbf{G} \in \mathbb{R}^{m \times n}$, and $\mathbf{A} \in \mathbb{R}^{p \times n}$.

Quadratically constrained QP (QCQP): Convex if and only if $\mathbf{P}_i \succeq \mathbf{0}, \ \forall i$

min
$$\frac{1}{2}\mathbf{x}^{T}\mathbf{P}_{0}\mathbf{x} + \mathbf{q}_{0}^{T}\mathbf{x} + r_{0}$$
 (15)
s.t. $\frac{1}{2}\mathbf{x}^{T}\mathbf{P}_{i}\mathbf{x} + \mathbf{q}_{i}^{T}\mathbf{x} + r_{i} \leq 0, \ i = 1, \dots, m,$
 $\mathbf{A}\mathbf{x} = \mathbf{b},$

where $\mathbf{P}_i \in \mathbb{S}^n$, $i = 0, 1, \dots, m$, and $\mathbf{A} \in \mathbb{R}^{p \times n}$.

Standard Convex Optimization Problems (Cont'd)

Second-order cone programming (SOCP)

min
$$\mathbf{c}^T \mathbf{x}$$
 (16)
s.t. $\|\mathbf{A}_i \mathbf{x} + \mathbf{b}_i\|_2 \le \mathbf{f}_i^T \mathbf{x} + d_i, \ i = 1, \dots, m,$
 $\mathbf{F} \mathbf{x} = \mathbf{g},$

where $\mathbf{A}_i \in \mathbb{R}^{n_i \times n}$, $\mathbf{b}_i \in \mathbb{R}^{n_i}$, $\mathbf{f}_i \in \mathbb{R}^n$, $d_i \in \mathbb{R}$, $\mathbf{F} \in \mathbb{R}^{p \times n}$, $\mathbf{g} \in \mathbb{R}^p$, $\mathbf{c} \in \mathbb{R}^n$, and $\mathbf{x} \in \mathbb{R}^n$ is the vector variable.

Semidefinite programming (SDP) - Standard Form

min Tr(**CX**) s.t. $\mathbf{X} \succeq \mathbf{0}$, Tr($\mathbf{A}_i \mathbf{X}$) = b_i , $i = 1, \dots, p$,

with variable $\mathbf{X} \in \mathbb{S}^n$, where $\mathbf{A}_i \in \mathbb{S}^n$, $\mathbf{C} \in \mathbb{S}^n$, and $b_i \in \mathbb{R}$.

(17)

• Consider the following convex optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \mathbb{R}^{m}} f_{1}(\mathbf{x}) + f_{2}(\mathbf{z})$$
s.t. $\mathbf{x} \in S_{1}, \ \mathbf{z} \in S_{2}$

$$\mathbf{z} = \mathbf{A}\mathbf{x}$$
(18)

where $f_1: \mathbb{R}^n \mapsto \mathbb{R}$ and $f_2: \mathbb{R}^m \mapsto \mathbb{R}$ are convex functions, \mathbf{A} is an $m \times n$ matrix, and $\mathcal{S}_1 \subset \mathbb{R}^n$ and $\mathcal{S}_2 \subset \mathbb{R}^m$ are nonempty convex sets.

• The considered dual problem of (18) is given by

$$\max_{\boldsymbol{\nu} \in \mathbb{R}^{m}} \min_{\mathbf{x} \in \mathcal{S}_{1}, \mathbf{z} \in \mathcal{S}_{2}} \left\{ f_{1}(\mathbf{x}) + f_{2}(\mathbf{z}) + \frac{c}{2} \| \mathbf{A}\mathbf{x} - \mathbf{z} \|_{2}^{2} + \boldsymbol{\nu}^{T} (\mathbf{A}\mathbf{x} - \mathbf{z}) \right\},$$
(19)

where c is a penalty parameter, and ν is the dual variable associated with the equality constraint in (18).

ADMM (Cont'd)

• Inner minimization (convex problems):

$$\mathbf{z}(q+1) = \arg\min_{\mathbf{z}\in\mathcal{S}_2} \left\{ f_2(\mathbf{z}) - \boldsymbol{\nu}(q)^T \mathbf{z} + \frac{c}{2} \|\mathbf{A}\mathbf{x}(q) - \mathbf{z}\|_2^2 \right\},$$
(20a)

$$\mathbf{x}(q+1) = \arg\min_{\mathbf{x}\in\mathcal{S}_1} \left\{ f_1(\mathbf{x}) + \boldsymbol{\nu}(q)^T \mathbf{A}\mathbf{x} + \frac{c}{2} \|\mathbf{A}\mathbf{x} - \mathbf{z}(q+1)\|_2^2 \right\}.$$
 (20b)

ADMM Algorithm

- 1: Set q = 0, choose c > 0.
- 2: Initialize $\nu(q)$ and $\mathbf{x}(q)$.
- 3: repeat
- 4: Solve (20a) and (20b) for z(q + 1) and x(q + 1) by two distributed equipments including *the information exchange of* z(q + 1) *and* x(q + 1) *between them;*

5:
$$\nu(q+1) = \nu(q) + c (\mathbf{Ax}(q+1) - \mathbf{z}(q+1));$$

6:
$$q := q + 1;$$

- 7: until the predefined stopping criterion is satisfied.
- When S_1 is bounded or $\mathbf{A}^T \mathbf{A}$ is invertible, ADMM is guaranteed to converge and the obtained $\{\mathbf{x}(q), \mathbf{z}(q)\}$ is an optimal solution of problem (18).

- Reformulation into a convex problem: Equivalent representations (e.g. epigraph representations); function transformation; change of variables, etc.
- Stationary-point solutions: Provided that C is closed and convex but f is nonconvex, a point x* is a stationary point of the nonconvex problem (1) if

$$f'(\mathbf{x}^{\star}; \mathbf{v}) \triangleq \liminf_{\lambda \downarrow 0} \frac{f(\mathbf{x}^{\star} + \lambda \mathbf{v}) - f(\mathbf{x}^{\star})}{\lambda} \ge 0 \quad \forall \mathbf{x}^{\star} + \mathbf{v} \in \mathcal{C}$$
(21)

 $\Leftrightarrow \ \nabla f(\mathbf{x}^{\star})^{T}(\mathbf{x} - \mathbf{x}^{\star}) \geq 0 \quad \forall \mathbf{x} \in \mathcal{C} \ \text{(when } f \text{ is differentiable)}$

where $f'(\mathbf{x}^*; \mathbf{v})$ is the *directional derivative* of f at a point \mathbf{x}^* in direction \mathbf{v} . Block successive upper bound minimization (BSUM) [Razaviyayn'13] guarantees a stationary-point solution under some convergence conditions.

• KKT points (i.e., solutions of KKT conditions) are also stationary points provided that the Slater's condition is satisfied.

[[]Razaviyayn'13] M. Razaviyayn, M. Hong, and Z.-Q. Luo, "A unified convergence analysis of block successive minimization methods for nonsmooth optimization," *SIAM J. Optimiz.*, vol. 23, no. 2, pp. 11261153, 2013.

Stationary points and BSUM

• An illustration of stationary points of problem (1) for a nonconvex f and convex C; convergence to a stationary point of (1) by BSUM.

Stationary points for nonconvex feasible set

• An illustration of stationary points of problem (1) when both f and C are nonconvex. If y_1, y_2, y_3 are stationary points of $\min_{\mathbf{x}\in C} f(\mathbf{x})$ where $C \subset C$ is convex, then conic $(C - \{y_i\}) = \{\theta \mathbf{v} \mid \mathbf{v} \in C - \{y_i\}, \theta \ge 0\}$ and

 $\mathcal{C} - \{\boldsymbol{y}_i\} \triangleq \{\mathbf{v} = \mathbf{x} - \{\boldsymbol{y}_i\} \mid \mathbf{x} \in \mathcal{C}\} \subset \operatorname{conic} (C - \{\boldsymbol{y}_i\}), \ i = 1, 2$ $\implies \boldsymbol{y}_1, \boldsymbol{y}_2 \text{ are also stationary points of (1).}$

Nonconvex problem

- Approximate solutions to problem (1) when f is convex but C is nonconvex:
 - Convex restriction to C: Successive convex approximation (SCA)

$$\boldsymbol{x}_{i}^{\star} = \arg\min_{\boldsymbol{\mathbf{x}}\in C_{i}} f(\boldsymbol{\mathbf{x}}) \in C_{i+1}$$
(22)

where $C_i \subset C$ is convex for all *i*. Then

$$f(\boldsymbol{x}_{i+1}^{\star}) = \min_{\boldsymbol{\mathbf{x}} \in C_{i+1}} f(\boldsymbol{\mathbf{x}}) \le f(\boldsymbol{x}_{i}^{\star})$$
(23)

After convergence, an approximate solution x_i^{\star} is obtained.

• Convex relaxation to C (e.g., semidefinite relaxation (SDR)):

$$\mathcal{C}' = \{ \mathbf{X} \in \mathbb{S}^n_+ \mid \operatorname{rank}(\mathbf{X}) = 1 \} \subset \mathcal{C} \text{ relaxed to conv } \mathcal{C}' = \mathbb{S}^n_+ \text{ (SDR)}; \\ \mathcal{C}' = \{-3, -1, +1, +3\} \subset \mathcal{C} \text{ relaxed to conv } \mathcal{C}' = [-3, 3]$$
 (24)

The obtained X^* or x^* may not be feasible to problem (1); for SDR, a good approximate solution can be obtained from X^* via *Gaussian randomization*.

Successive Convex Approximation (SCA)

Illustration of SCA for (1) when f is convex but C is nonconvex, yielding a solution x^{*}_i (which is a stationary point under some mild condition).

Algorithm development

• Foundamental theory and tools: Calculus, linear algebra, matrix analysis and computations, convex sets, convex functions, convex problems (e.g., geometric program (GP), LP, QP, SOCP, SDP), duality, interior-point method; CVX and SeDuMi.

A new book

Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications Chong-Yung Chi, Wei-Chiang Li, Chia-Hsiang Lin (Publisher: CRC Press, 2017, 432 pages, ISBN: 9781498776455)

Motivation: Most of mathematical books are hard to read for engineering students and professionals due to *lack of enough fundamental details and tangible linkage* between mathematical theory and applications.

- The book is written in a *causally sequential fashion*; namely, one can *review/peruse the related materials introduced in early chapters/sections again,* to overpass hurdles in reading.
- Covers convex optimization from fundamentals to advanced applications, while holding a strong link from theory to applications.
- *Provides comprehensive proofs and perspective interpretations*, many insightful figures, examples and remarks to illuminate core convex optimization theory.

Book features

- Illustrates, by cutting-edge applications, how to apply the convex optimization theory, like a guided journey/exploration rather than pure mathematics.
- Has been used for a 2-week short course under the book title at 9 major universities (Shandong Univ, Tsinghua Univ, Tianjin Univ, BJTU, Xiamen Univ., UESTC, SYSU, BUPT, SDNU) in Mainland China more than 17 times since early 2010.

Thank you for your attention!

Acknowledgment: Financial support by NTHU; my students, visiting students and scholars, short-course participants for almost uncountable questions, interactions and comments over the last decade.