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Optimization problem

Optimization problem:

minimize f(x)

subject to x ∈ C
(1)

where f(x) is the objective function to be minimized and C is the feasible
set from which we try to find an optimal solution. Let

x? = arg min
x∈C

f(x) (optimal solution or global minimizer) (2)

Challenges in applications:
• Local optima; large problem size; decision variable x involving real and/or
complex vectors, matrices; feasible set C involving generalized inequalities,
etc.

• Computational complexity: NP-hard; polynomial-time solvable.

• Performance analysis: Performance insights, properties, perspectives,
proofs (e.g., identifiability and convergence), limits and bounds.
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Convex sets and convex functions-1

Affine (convex) combination: Provided that C is a nonempty set,

x = θ1x1 + · · ·+ θKxK , xi ∈ C ∀i (3)

is called an affine (a convex) combination of x1, . . . ,xK (K vectors or
points of a set) if

∑K
i=1 θi = 1, θi ∈ R (θi ∈ R+), K ∈ Z++.

Affine (convex) set:
• C is an affine (a convex) set if C is closed under the operation of affine
(convex) combination;

• an affine set is constructed by lines;

• a convex set is constructed by line segments.

Conic set:
• If θx ∈ C for any θ ∈ R+ and any x ∈ C, then the set C is a cone and it
is constructed by rays starting from the origin;

• the linear combination (3) is called a conic combination if θi ≥ 0 ∀i;
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Convex Set Examples

Ellipsoid and Euclidean ball Second-order cone
centered at xc C =

{
(x, t) ∈ Rn+1 | ‖x‖2 ≤ t

}
Left plot: An ellipsoid with semiaxes

√
λ1,
√
λ2, and an Euclidean ball with

radius r > max{
√
λ1,
√
λ2} in R2; right plot: Second-order cone in R3.
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Convex sets and convex functions-2

Let A = {a1, . . . ,aN} ⊂ RM . Affine hull of A (the smallest affine set
containing A) is defined as

aff A ,

{
x =

N∑
i=1

θiai |
N∑
i=1

θi = 1, θi ∈ R ∀i
}

=
{
x = Cα+ d | α ∈ Rp

}
(affine set representation)

where C ∈ RM×p is of full column rank, d ∈ aff A, and

affdimA = p ≤ min{N − 1,M}.

• A is affinely independent (A.I.) with affdimA = N − 1 if the set
{a− ai | a ∈ A,a 6= ai} is linearly independent for any i; moreover,

aff A = {x | bTx = h} , H(b, h) (when M = N)

is a hyperplane, where (b, h) can be determined from A (closed-form
expressions available).
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Convex sets and convex functions-3

= {x ∈ R3 | bT4 x = h4}

Figure 1: An illustration in R3, where conv{a1,a2,a3} is a simplex defined by the
shaded triangle, and conv{a1,a2,a3,a4} is a simplex (and also a simplest simplex)
defined by the tetrahedron with the four extreme points {a1,a2,a3,a4}.
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Convex sets and convex functions-4

Let A = {a1, . . . ,aN} ⊂ RM . Convex hull of A (the smallest convex set
containing A) is defined as

conv A =

{
x =

N∑
i=1

θiai |
N∑
i=1

θi = 1, θi ∈ R+ ∀i
}
⊂ aff A

• convA is called a simplex (a polytope with N vertices) if A is A.I.
• When A is A.I. and M = N − 1, convA is called a simplest simplex of
N vertices (i.e., a1, . . . ,aN );

aff (A \ {ai}) = H(bi, hi), i ∈ IN = {1, . . . , N}

is a hyperplane, where the N boundary hyperplane parameters
{(bi, hi), i = 1, . . . , N} can be uniquely determined from A (closed-form
expressions available) and vice versa.
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Convex Set Examples

conic C ,
{∑k

i=1 θixi | xi ∈ C, θi ∈ R+, k ∈ Z++

}
= {θx | x ∈ conv C, θ ≥ 0}

Left plot: conic C (called the conic hull of C) is a convex cone formed
by C = {x1,x2} via conic combinations, i.e., the smallest conic set that
contains C; right plot: conic C formed by another set C (star).
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Convex sets and convex functions-5

Left plot: y1+y2
2

/∈ B, implying that B is not a convex set; right plot: f(x)
is a convex function (by (4)).
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Convex sets and convex functions-6

Convex function: f is convex if dom f (the domain of f) is a convex set,
and for all x,y ∈ dom f ,

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀ 0 ≤ θ ≤ 1. (4)

• f is concave if −f is convex.

Some Examples of Convex Functions

An affine function f(x) = aTx + b is both convex and concave on Rn.

f(x) = xTPx + 2qTx + r, where P ∈ Sn,q ∈ Rn and r ∈ R is convex if
and only if P ∈ Sn+.

Every norm on Rn (e.g., ‖ · ‖p for p ≥ 1) is convex.

Linear function f(X) = Tr(AX) (where Tr(V) denotes the trace of a
square matrix V) is both convex and concave on Rn×n.

f(X) = − log det(X) is convex on Sn++.
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Ways Proving Convexity of a Function

First-order Condition

Suppose that f is differentiable. f is a convex function if and only if dom f is
a convex set and

f(y) ≥ f(x) +∇f(x)T (y − x) ∀x,y ∈ dom f. (5)

Second-order Condition

Suppose that f is twice differentiable. f is a convex function if and only if
dom f is a convex set and

∇2f(x) � 0 (positive-semidefinite), ∀x ∈ dom f. (6)

Epigraph

The epigraph of a function f : Rn → R is defined as

epi f = {(x, t) | x ∈ dom f, f(x) ≤ t} ⊆ Rn+1. (7)

A function f is convex if and only if epi f is a convex set.
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First-order Condition and Epigraph

Left plot: first-order condition for a convex function f for the
one-dimensional case: f(b) ≥ f(a) + f ′(a)(b− a), for all a, b ∈ dom f ;
right plot: the epigraph of a convex function f : R→ R.
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Convex Functions (Cont’d)

Convexity Preserving Operations

Intersection,
⋂
i Ci of convex sets Ci is a convex set;

Nonnegative weighted sum,
∑
i θifi (where θi ≥ 0) of convex functions

fi is a convex function.

Image, h(C) = {h(x) | x ∈ C)}, of a convex set C via affine mapping
h(x) , Ax + b, is a convex set;

Composition f(h(x)) of a convex function f with affine mapping h is a
convex function;

Image, p(C), of a convex set C via perspective mapping p(x, t) , x/t is
a convex set;

Perspective, g(x, t) = tf(x/t) (where t > 0) of a convex function f is a
convex function.
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Perspective Mapping & Perspective of a Function

Left plot: pinhole camera interpretation of the perspective mapping
p(x, t) = x/t, t > 0;
right plot: epigraph of the perspective g(x, t) = tf(x/t), t > 0 of f(x) = x2,
where each ray is associated with g(at, t) = a2t for a different value of a.
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Convex optimization problem

Convex problem:

(CVXP) p? = min
x∈C

f(x) (8)

is a convex problem if the objective function f(·) is a convex function and
C is a convex set (called the feasible set) in standard form as follows:

C = {x ∈ D | fi(x) ≤ 0, hj(x) = 0, i = 1, . . . ,m, j = 1, . . . , p},

where fi(x) is convex for all i and hj(x) is affine for all j and

D = dom f ∩

{
m⋂
i=1

dom fi

}⋂{
p⋂
i=1

dom hi

}

is called the problem domain.

Advantages:
• Global optimality: x? can be obtained by closed-form solution, analytically
(algorithm), or numerically by convex solvers (e.g., CVX and SeDuMi).

• Computational complexity: Polynomial-time solvable.

• Performance analysis: KKT conditions are the backbone for analysis.
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Global optimality and solution

An optimality criterion: Any suboptimal solution to CVXP (8) is globally
optimal . Assume that f is differentiable. Then a point x? ∈ C is optimal if
and only if

∇f(x?)T (x− x?) ≥ 0, ∀x ∈ C (9)

(where int C 6= ∅ is assumed)
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Global optimality and solution

Besides the optimality criterion (9), a complementary approach for
solving CVXP (8) is founded on the “duality theory”.

• Dual problem:

L(x,λ,ν) , f(x) +
∑m
i=1 λifi(x) +

∑p
i=1 νihi(x) (Lagrangian)

g(λ,ν) = infx∈D L(x,λ,ν)> −∞ (dual function)

d? = max {g(λ,ν) | λ � 0,ν ∈ Rp} (dual problem)

≤ p? = min {f(x) | x ∈ C)} (primal problem CVXP (8))

(10)

where λ = (λ1, . . . , λm) and ν = (ν1, . . . , νp) are dual variables; “ � ”
stands for an abbreviated generalized inequality defined by the proper
cone K = Rm+ , i.e., the first orthant, (a closed convex solid and pointed
cone), i.e., λ �K 0⇔ λ ∈ K.

CVXP (8) and its dual can be solved simultaneously by solving the
so-called KKT conditions.
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Global optimality and solution

KKT conditions:
Suppose that f, f1, . . . , fm, h1, . . . , hp are differentiable and x? is primal
optimal and (λ?,ν?) is dual optimal to CVXP (8). Under strong duality , i.e.,

p? = d? = L(x?,λ?,ν?)

(which holds true under Slater’s condition: a strictly feasible point exists,
i.e., relint C 6= ∅), the KKT conditions for solving x? and (λ?,ν?) are as
follows:

∇xL(x?,λ?,ν?) = 0, (11a)

fi(x
?) ≤ 0, i = 1, . . . ,m, (11b)

hi(x
?) = 0, i = 1, . . . , p, (11c)

λ?i ≥ 0, i = 1, . . . ,m, (11d)

λ?i fi(x
?) = 0, i = 1, . . . ,m. (complementary slackness) (11e)

The above KKT conditions (11) and the optimality criterion (9) are
equivalent under Slater’s condition.
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Strong Duality

Lagrangian L(x, λ), dual function g(λ), and primal-dual optimal solution
(x?, λ?) = (1, 1) of the convex problem min{f0(x) = x2 | (x− 2)2 ≤ 1}
with strong duality. Note that f0(x?) = g(λ?) = L(x?, λ?) = 1.
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Standard Convex Optimization Problems

Linear Programming (LP) - Inequality Form

min cTx (12)

s.t. Gx � h, (� stands for componentwise inequality)

Ax = b,

where c ∈ Rn, A ∈ Rp×n, b ∈ Rp, G ∈ Rm×n, h ∈ Rm, and x ∈ Rn is the
unknown vector variable.

LP- Standard Form

min cTx (13)

s.t. x � 0,

Ax = b,

where c ∈ Rn, A ∈ Rp×n, b ∈ Rp, and x ∈ Rn is the unknown vector variable.
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Standard Convex Optimization Problems (Cont’d)

Quadratic Programming (QP): Convex if and only if P � 0 (i.e., P is positive
semidefinite)

min
1

2
xTPx + qTx + r (14)

s.t. Ax = b, Gx � h,

where P ∈ Sn, G ∈ Rm×n, and A ∈ Rp×n.

Quadratically constrained QP (QCQP): Convex if and only if Pi � 0, ∀i

min
1

2
xTP0x + qT0 x + r0 (15)

s.t.
1

2
xTPix + qTi x + ri ≤ 0, i = 1, . . . ,m,

Ax = b,

where Pi ∈ Sn, i = 0, 1, . . . ,m, and A ∈ Rp×n.
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Standard Convex Optimization Problems (Cont’d)

Second-order cone programming (SOCP)

min cTx (16)

s.t. ‖Aix + bi‖2 ≤ fTi x + di, i = 1, . . . ,m,

Fx = g,

where Ai ∈ Rni×n, bi ∈ Rni , fi ∈ Rn, di ∈ R, F ∈ Rp×n, g ∈ Rp, c ∈ Rn,
and x ∈ Rn is the vector variable.

Semidefinite programming (SDP) - Standard Form

min Tr(CX) (17)

s.t. X � 0,

Tr(AiX) = bi, i = 1, . . . , p,

with variable X ∈ Sn, where Ai ∈ Sn, C ∈ Sn, and bi ∈ R.
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Alternating direction method of multiplers (ADMM)

Consider the following convex optimization problem:

min
x∈Rn,z∈Rm

f1(x) + f2(z)

s.t. x ∈ S1, z ∈ S2

z = Ax

(18)

where f1 : Rn 7→ R and f2 : Rm 7→ R are convex functions, A is an m× n
matrix, and S1 ⊂ Rn and S2 ⊂ Rm are nonempty convex sets.

The considered dual problem of (18) is given by

max
ν∈Rm

min
x∈S1,z∈S2

{
f1(x)+f2(z)+

c

2

∥∥Ax− z
∥∥2

2
+ νT (Ax− z)

}
, (19)

where c is a penalty parameter, and ν is the dual variable associated with
the equality constraint in (18).
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ADMM (Cont’d)

Inner minimization (convex problems):

z(q + 1) = arg min
z∈S2

{
f2(z)− ν(q)T z +

c

2

∥∥Ax(q)− z
∥∥2

2

}
, (20a)

x(q + 1) = arg min
x∈S1

{
f1(x) + ν(q)TAx +

c

2

∥∥Ax− z(q + 1)
∥∥2

2

}
. (20b)

ADMM Algorithm

1: Set q = 0, choose c > 0.
2: Initialize ν(q) and x(q).
3: repeat
4: Solve (20a) and (20b) for z(q + 1) and x(q + 1) by two distributed

equipments including the information exchange of z(q + 1) and x(q + 1)
between them;

5: ν(q+1) = ν(q) + c (Ax(q + 1)− z(q + 1));
6: q := q + 1;
7: until the predefined stopping criterion is satisfied.

When S1 is bounded or ATA is invertible, ADMM is guaranteed to converge
and the obtained {x(q), z(q)} is an optimal solution of problem (18).
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Nonconvex problem

Reformulation into a convex problem:
Equivalent representations (e.g. epigraph representations); function
transformation; change of variables, etc.

Stationary-point solutions: Provided that C is closed and convex but f is
nonconvex, a point x? is a stationary point of the nonconvex problem (1) if

f ′(x?; v) , lim inf
λ↓0

f(x? + λv)− f(x?)

λ
≥ 0 ∀x? + v ∈ C (21)

⇔ ∇f(x?)T (x− x?) ≥ 0 ∀x ∈ C (when f is differentiable)

where f ′(x?; v) is the directional derivative of f at a point x? in direction v.
Block successive upper bound minimization (BSUM) [Razaviyayn’13]
guarantees a stationary-point solution under some convergence conditions.

• KKT points (i.e., solutions of KKT conditions) are also stationary points
provided that the Slater’s condition is satisfied.

[Razaviyayn’13] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of block successive minimization

methods for nonsmooth optimization,” SIAM J. Optimiz., vol. 23, no. 2, pp. 11261153, 2013.
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Stationary points and BSUM

An illustration of stationary points of problem (1) for a nonconvex f and
convex C; convergence to a stationary point of (1) by BSUM.
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Stationary points for nonconvex feasible set

An illustration of stationary points of problem (1) when both f and C are
nonconvex. If y1,y2,y3 are stationary points of minx∈C f(x) where C ⊂ C
is convex, then conic (C − {yi}) = {θv | v ∈ C − {yi}, θ ≥ 0} and

C − {yi} , {v = x− {yi} | x ∈ C}⊂ conic (C − {yi}), i = 1, 2

=⇒ y1,y2 are also stationary points of (1).
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Nonconvex problem

Approximate solutions to problem (1) when f is convex but C is nonconvex:

• Convex restriction to C: Successive convex approximation (SCA)

x?i = arg min
x∈Ci

f(x) ∈ Ci+1 (22)

where Ci ⊂ C is convex for all i. Then

f(x?i+1) = min
x∈Ci+1

f(x) ≤ f(x?i ) (23)

After convergence, an approximate solution x?i is obtained.

• Convex relaxation to C (e.g., semidefinite relaxation (SDR)):

C′ = {X ∈ Sn+ | rank(X) = 1}⊂ C relaxed to conv C′ = Sn+ (SDR);

C′ = {−3,−1,+1,+3}⊂ C relaxed to conv C′ = [−3, 3]
(24)

The obtained X? or x? may not be feasible to problem (1); for SDR, a good
approximate solution can be obtained from X? via Gaussian randomization.
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Successive Convex Approximation (SCA)

Illustration of SCA for (1) when f is convex but C is nonconvex, yielding a
solution x?i (which is a stationary point under some mild condition).
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Algorithm development

Foundamental theory and tools: Calculus, linear algebra, matrix
analysis and computations, convex sets, convex functions, convex
problems (e.g., geometric program (GP), LP, QP, SOCP, SDP), duality,
interior-point method; CVX and SeDuMi.
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A new book

Convex Optimization for Signal Processing and
Communications: From Fundamentals to Applications
Chong-Yung Chi, Wei-Chiang Li, Chia-Hsiang Lin
(Publisher: CRC Press, 2017, 432 pages, ISBN: 9781498776455)

Motivation: Most of mathematical books are hard to read for engineering
students and professionals due to lack of enough fundamental details and
tangible linkage between mathematical theory and applications.

The book is written in a causally sequential fashion; namely, one can
review/peruse the related materials introduced in early chapters/sections
again, to overpass hurdles in reading.

Covers convex optimization from fundamentals to advanced applications,
while holding a strong link from theory to applications.

Provides comprehensive proofs and perspective interpretations, many
insightful figures, examples and remarks to illuminate core convex
optimization theory.

32 / 122



Book features

Illustrates, by cutting-edge
applications, how to apply the
convex optimization theory, like a
guided journey/exploration rather
than pure mathematics.

Has been used for a 2-week short
course under the book title at 9
major universities (Shandong
Univ, Tsinghua Univ, Tianjin
Univ, BJTU, Xiamen Univ.,
UESTC, SYSU, BUPT, SDNU) in
Mainland China more than 17
times since early 2010.

Thank you for your attention!

Acknowledgment: Financial support by NTHU; my students, visiting students
and scholars, short-course participants for almost uncountable questions,
interactions and comments over the last decade.
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